direct product, metabelian, soluble, monomial, A-group
Aliases: C3×C24⋊C5, C24⋊2C15, (C23×C6)⋊C5, SmallGroup(240,199)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C24 — C24⋊C5 — C3×C24⋊C5 |
C24 — C3×C24⋊C5 |
Generators and relations for C3×C24⋊C5
G = < a,b,c,d,e,f | a3=b2=c2=d2=e2=f5=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bcd, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, fef-1=b >
Character table of C3×C24⋊C5
class | 1 | 2A | 2B | 2C | 3A | 3B | 5A | 5B | 5C | 5D | 6A | 6B | 6C | 6D | 6E | 6F | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | |
size | 1 | 5 | 5 | 5 | 1 | 1 | 16 | 16 | 16 | 16 | 5 | 5 | 5 | 5 | 5 | 5 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ52 | ζ53 | ζ5 | 1 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ5 | ζ54 | ζ52 | ζ53 | ζ5 | ζ54 | ζ53 | linear of order 5 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ53 | ζ52 | ζ54 | 1 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ54 | ζ5 | ζ53 | ζ52 | ζ54 | ζ5 | ζ52 | linear of order 5 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ54 | ζ5 | ζ52 | 1 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ52 | ζ53 | ζ54 | ζ5 | ζ52 | ζ53 | ζ5 | linear of order 5 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ5 | ζ54 | ζ53 | 1 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ53 | ζ52 | ζ5 | ζ54 | ζ53 | ζ52 | ζ54 | linear of order 5 |
ρ8 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ5 | ζ53 | ζ52 | ζ54 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3ζ53 | ζ32ζ54 | ζ32ζ5 | ζ32ζ53 | ζ3ζ52 | ζ3ζ54 | ζ3ζ5 | ζ32ζ52 | linear of order 15 |
ρ9 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ53 | ζ54 | ζ5 | ζ52 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3ζ54 | ζ32ζ52 | ζ32ζ53 | ζ32ζ54 | ζ3ζ5 | ζ3ζ52 | ζ3ζ53 | ζ32ζ5 | linear of order 15 |
ρ10 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ54 | ζ52 | ζ53 | ζ5 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3ζ52 | ζ32ζ5 | ζ32ζ54 | ζ32ζ52 | ζ3ζ53 | ζ3ζ5 | ζ3ζ54 | ζ32ζ53 | linear of order 15 |
ρ11 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ5 | ζ53 | ζ52 | ζ54 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32ζ53 | ζ3ζ54 | ζ3ζ5 | ζ3ζ53 | ζ32ζ52 | ζ32ζ54 | ζ32ζ5 | ζ3ζ52 | linear of order 15 |
ρ12 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ52 | ζ5 | ζ54 | ζ53 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32ζ5 | ζ3ζ53 | ζ3ζ52 | ζ3ζ5 | ζ32ζ54 | ζ32ζ53 | ζ32ζ52 | ζ3ζ54 | linear of order 15 |
ρ13 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ52 | ζ5 | ζ54 | ζ53 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3ζ5 | ζ32ζ53 | ζ32ζ52 | ζ32ζ5 | ζ3ζ54 | ζ3ζ53 | ζ3ζ52 | ζ32ζ54 | linear of order 15 |
ρ14 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ53 | ζ54 | ζ5 | ζ52 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32ζ54 | ζ3ζ52 | ζ3ζ53 | ζ3ζ54 | ζ32ζ5 | ζ32ζ52 | ζ32ζ53 | ζ3ζ5 | linear of order 15 |
ρ15 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ54 | ζ52 | ζ53 | ζ5 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32ζ52 | ζ3ζ5 | ζ3ζ54 | ζ3ζ52 | ζ32ζ53 | ζ32ζ5 | ζ32ζ54 | ζ3ζ53 | linear of order 15 |
ρ16 | 5 | 1 | 1 | -3 | 5 | 5 | 0 | 0 | 0 | 0 | -3 | -3 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ17 | 5 | 1 | -3 | 1 | 5 | 5 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ18 | 5 | -3 | 1 | 1 | 5 | 5 | 0 | 0 | 0 | 0 | 1 | 1 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ19 | 5 | 1 | 1 | -3 | -5-5√-3/2 | -5+5√-3/2 | 0 | 0 | 0 | 0 | 3-3√-3/2 | 3+3√-3/2 | ζ32 | ζ3 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ20 | 5 | 1 | -3 | 1 | -5+5√-3/2 | -5-5√-3/2 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | ζ3 | ζ32 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 5 | -3 | 1 | 1 | -5+5√-3/2 | -5-5√-3/2 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | 3-3√-3/2 | 3+3√-3/2 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 5 | 1 | 1 | -3 | -5+5√-3/2 | -5-5√-3/2 | 0 | 0 | 0 | 0 | 3+3√-3/2 | 3-3√-3/2 | ζ3 | ζ32 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 5 | 1 | -3 | 1 | -5-5√-3/2 | -5+5√-3/2 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | ζ32 | ζ3 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 5 | -3 | 1 | 1 | -5-5√-3/2 | -5+5√-3/2 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | 3+3√-3/2 | 3-3√-3/2 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 27 17)(2 28 18)(3 29 19)(4 30 20)(5 26 16)(6 24 14)(7 25 15)(8 21 11)(9 22 12)(10 23 13)
(1 11)(3 13)(8 27)(10 29)(17 21)(19 23)
(1 11)(2 12)(4 14)(5 15)(6 30)(7 26)(8 27)(9 28)(16 25)(17 21)(18 22)(20 24)
(3 13)(4 14)(6 30)(10 29)(19 23)(20 24)
(2 12)(4 14)(6 30)(9 28)(18 22)(20 24)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
G:=sub<Sym(30)| (1,27,17)(2,28,18)(3,29,19)(4,30,20)(5,26,16)(6,24,14)(7,25,15)(8,21,11)(9,22,12)(10,23,13), (1,11)(3,13)(8,27)(10,29)(17,21)(19,23), (1,11)(2,12)(4,14)(5,15)(6,30)(7,26)(8,27)(9,28)(16,25)(17,21)(18,22)(20,24), (3,13)(4,14)(6,30)(10,29)(19,23)(20,24), (2,12)(4,14)(6,30)(9,28)(18,22)(20,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)>;
G:=Group( (1,27,17)(2,28,18)(3,29,19)(4,30,20)(5,26,16)(6,24,14)(7,25,15)(8,21,11)(9,22,12)(10,23,13), (1,11)(3,13)(8,27)(10,29)(17,21)(19,23), (1,11)(2,12)(4,14)(5,15)(6,30)(7,26)(8,27)(9,28)(16,25)(17,21)(18,22)(20,24), (3,13)(4,14)(6,30)(10,29)(19,23)(20,24), (2,12)(4,14)(6,30)(9,28)(18,22)(20,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30) );
G=PermutationGroup([[(1,27,17),(2,28,18),(3,29,19),(4,30,20),(5,26,16),(6,24,14),(7,25,15),(8,21,11),(9,22,12),(10,23,13)], [(1,11),(3,13),(8,27),(10,29),(17,21),(19,23)], [(1,11),(2,12),(4,14),(5,15),(6,30),(7,26),(8,27),(9,28),(16,25),(17,21),(18,22),(20,24)], [(3,13),(4,14),(6,30),(10,29),(19,23),(20,24)], [(2,12),(4,14),(6,30),(9,28),(18,22),(20,24)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)]])
G:=TransitiveGroup(30,52);
C3×C24⋊C5 is a maximal subgroup of
C24⋊D15
Matrix representation of C3×C24⋊C5 ►in GL5(𝔽31)
5 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 5 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
4 | 20 | 22 | 30 | 0 |
26 | 10 | 8 | 0 | 30 |
1 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 11 | 0 | 1 | 0 |
26 | 0 | 8 | 0 | 30 |
30 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 22 | 30 | 0 |
0 | 0 | 8 | 0 | 30 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 |
4 | 20 | 0 | 30 | 0 |
0 | 0 | 23 | 0 | 1 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
4 | 20 | 22 | 29 | 0 |
0 | 0 | 0 | 9 | 1 |
0 | 0 | 0 | 23 | 0 |
G:=sub<GL(5,GF(31))| [5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,5],[1,0,0,4,26,0,1,0,20,10,0,0,1,22,8,0,0,0,30,0,0,0,0,0,30],[1,0,0,0,26,0,30,0,11,0,0,0,1,0,8,0,0,0,1,0,0,0,0,0,30],[30,0,0,0,0,0,30,0,0,0,0,0,1,22,8,0,0,0,30,0,0,0,0,0,30],[1,0,0,4,0,0,1,0,20,0,0,0,30,0,23,0,0,0,30,0,0,0,0,0,1],[0,0,4,0,0,1,0,20,0,0,0,1,22,0,0,0,0,29,9,23,0,0,0,1,0] >;
C3×C24⋊C5 in GAP, Magma, Sage, TeX
C_3\times C_2^4\rtimes C_5
% in TeX
G:=Group("C3xC2^4:C5");
// GroupNames label
G:=SmallGroup(240,199);
// by ID
G=gap.SmallGroup(240,199);
# by ID
G:=PCGroup([6,-3,-5,-2,2,2,2,728,1089,1660,2711]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^2=f^5=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,f*e*f^-1=b>;
// generators/relations
Export
Subgroup lattice of C3×C24⋊C5 in TeX
Character table of C3×C24⋊C5 in TeX