Copied to
clipboard

G = C3×C24⋊C5order 240 = 24·3·5

Direct product of C3 and C24⋊C5

direct product, metabelian, soluble, monomial, A-group

Aliases: C3×C24⋊C5, C242C15, (C23×C6)⋊C5, SmallGroup(240,199)

Series: Derived Chief Lower central Upper central

C1C24 — C3×C24⋊C5
C1C24C24⋊C5 — C3×C24⋊C5
C24 — C3×C24⋊C5
C1C3

Generators and relations for C3×C24⋊C5
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e2=f5=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bcd, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, fef-1=b >

5C2
5C2
5C2
16C5
5C22
5C22
5C22
5C22
5C22
5C22
5C22
5C6
5C6
5C6
16C15
5C23
5C23
5C23
5C2×C6
5C2×C6
5C2×C6
5C2×C6
5C2×C6
5C2×C6
5C2×C6
5C22×C6
5C22×C6
5C22×C6

Character table of C3×C24⋊C5

 class 12A2B2C3A3B5A5B5C5D6A6B6C6D6E6F15A15B15C15D15E15F15G15H
 size 155511161616165555551616161616161616
ρ1111111111111111111111111    trivial
ρ21111ζ3ζ321111ζ32ζ3ζ3ζ32ζ32ζ3ζ32ζ3ζ3ζ3ζ32ζ32ζ32ζ3    linear of order 3
ρ31111ζ32ζ31111ζ3ζ32ζ32ζ3ζ3ζ32ζ3ζ32ζ32ζ32ζ3ζ3ζ3ζ32    linear of order 3
ρ4111111ζ54ζ52ζ53ζ5111111ζ52ζ5ζ54ζ52ζ53ζ5ζ54ζ53    linear of order 5
ρ5111111ζ5ζ53ζ52ζ54111111ζ53ζ54ζ5ζ53ζ52ζ54ζ5ζ52    linear of order 5
ρ6111111ζ53ζ54ζ5ζ52111111ζ54ζ52ζ53ζ54ζ5ζ52ζ53ζ5    linear of order 5
ρ7111111ζ52ζ5ζ54ζ53111111ζ5ζ53ζ52ζ5ζ54ζ53ζ52ζ54    linear of order 5
ρ81111ζ32ζ3ζ5ζ53ζ52ζ54ζ3ζ32ζ32ζ3ζ3ζ32ζ3ζ53ζ32ζ54ζ32ζ5ζ32ζ53ζ3ζ52ζ3ζ54ζ3ζ5ζ32ζ52    linear of order 15
ρ91111ζ32ζ3ζ53ζ54ζ5ζ52ζ3ζ32ζ32ζ3ζ3ζ32ζ3ζ54ζ32ζ52ζ32ζ53ζ32ζ54ζ3ζ5ζ3ζ52ζ3ζ53ζ32ζ5    linear of order 15
ρ101111ζ32ζ3ζ54ζ52ζ53ζ5ζ3ζ32ζ32ζ3ζ3ζ32ζ3ζ52ζ32ζ5ζ32ζ54ζ32ζ52ζ3ζ53ζ3ζ5ζ3ζ54ζ32ζ53    linear of order 15
ρ111111ζ3ζ32ζ5ζ53ζ52ζ54ζ32ζ3ζ3ζ32ζ32ζ3ζ32ζ53ζ3ζ54ζ3ζ5ζ3ζ53ζ32ζ52ζ32ζ54ζ32ζ5ζ3ζ52    linear of order 15
ρ121111ζ3ζ32ζ52ζ5ζ54ζ53ζ32ζ3ζ3ζ32ζ32ζ3ζ32ζ5ζ3ζ53ζ3ζ52ζ3ζ5ζ32ζ54ζ32ζ53ζ32ζ52ζ3ζ54    linear of order 15
ρ131111ζ32ζ3ζ52ζ5ζ54ζ53ζ3ζ32ζ32ζ3ζ3ζ32ζ3ζ5ζ32ζ53ζ32ζ52ζ32ζ5ζ3ζ54ζ3ζ53ζ3ζ52ζ32ζ54    linear of order 15
ρ141111ζ3ζ32ζ53ζ54ζ5ζ52ζ32ζ3ζ3ζ32ζ32ζ3ζ32ζ54ζ3ζ52ζ3ζ53ζ3ζ54ζ32ζ5ζ32ζ52ζ32ζ53ζ3ζ5    linear of order 15
ρ151111ζ3ζ32ζ54ζ52ζ53ζ5ζ32ζ3ζ3ζ32ζ32ζ3ζ32ζ52ζ3ζ5ζ3ζ54ζ3ζ52ζ32ζ53ζ32ζ5ζ32ζ54ζ3ζ53    linear of order 15
ρ16511-3550000-3-3111100000000    orthogonal lifted from C24⋊C5
ρ1751-315500001111-3-300000000    orthogonal lifted from C24⋊C5
ρ185-31155000011-3-31100000000    orthogonal lifted from C24⋊C5
ρ19511-3-5-5-3/2-5+5-3/200003-3-3/23+3-3/2ζ32ζ3ζ3ζ3200000000    complex faithful
ρ2051-31-5+5-3/2-5-5-3/20000ζ32ζ3ζ3ζ323+3-3/23-3-3/200000000    complex faithful
ρ215-311-5+5-3/2-5-5-3/20000ζ32ζ33-3-3/23+3-3/2ζ32ζ300000000    complex faithful
ρ22511-3-5+5-3/2-5-5-3/200003+3-3/23-3-3/2ζ3ζ32ζ32ζ300000000    complex faithful
ρ2351-31-5-5-3/2-5+5-3/20000ζ3ζ32ζ32ζ33-3-3/23+3-3/200000000    complex faithful
ρ245-311-5-5-3/2-5+5-3/20000ζ3ζ323+3-3/23-3-3/2ζ3ζ3200000000    complex faithful

Permutation representations of C3×C24⋊C5
On 30 points - transitive group 30T52
Generators in S30
(1 27 17)(2 28 18)(3 29 19)(4 30 20)(5 26 16)(6 24 14)(7 25 15)(8 21 11)(9 22 12)(10 23 13)
(1 11)(3 13)(8 27)(10 29)(17 21)(19 23)
(1 11)(2 12)(4 14)(5 15)(6 30)(7 26)(8 27)(9 28)(16 25)(17 21)(18 22)(20 24)
(3 13)(4 14)(6 30)(10 29)(19 23)(20 24)
(2 12)(4 14)(6 30)(9 28)(18 22)(20 24)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)

G:=sub<Sym(30)| (1,27,17)(2,28,18)(3,29,19)(4,30,20)(5,26,16)(6,24,14)(7,25,15)(8,21,11)(9,22,12)(10,23,13), (1,11)(3,13)(8,27)(10,29)(17,21)(19,23), (1,11)(2,12)(4,14)(5,15)(6,30)(7,26)(8,27)(9,28)(16,25)(17,21)(18,22)(20,24), (3,13)(4,14)(6,30)(10,29)(19,23)(20,24), (2,12)(4,14)(6,30)(9,28)(18,22)(20,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)>;

G:=Group( (1,27,17)(2,28,18)(3,29,19)(4,30,20)(5,26,16)(6,24,14)(7,25,15)(8,21,11)(9,22,12)(10,23,13), (1,11)(3,13)(8,27)(10,29)(17,21)(19,23), (1,11)(2,12)(4,14)(5,15)(6,30)(7,26)(8,27)(9,28)(16,25)(17,21)(18,22)(20,24), (3,13)(4,14)(6,30)(10,29)(19,23)(20,24), (2,12)(4,14)(6,30)(9,28)(18,22)(20,24), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30) );

G=PermutationGroup([[(1,27,17),(2,28,18),(3,29,19),(4,30,20),(5,26,16),(6,24,14),(7,25,15),(8,21,11),(9,22,12),(10,23,13)], [(1,11),(3,13),(8,27),(10,29),(17,21),(19,23)], [(1,11),(2,12),(4,14),(5,15),(6,30),(7,26),(8,27),(9,28),(16,25),(17,21),(18,22),(20,24)], [(3,13),(4,14),(6,30),(10,29),(19,23),(20,24)], [(2,12),(4,14),(6,30),(9,28),(18,22),(20,24)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)]])

G:=TransitiveGroup(30,52);

C3×C24⋊C5 is a maximal subgroup of   C24⋊D15

Matrix representation of C3×C24⋊C5 in GL5(𝔽31)

50000
05000
00500
00050
00005
,
10000
01000
00100
42022300
26108030
,
10000
030000
00100
011010
2608030
,
300000
030000
00100
0022300
008030
,
10000
01000
003000
4200300
002301
,
01000
00100
42022290
00091
000230

G:=sub<GL(5,GF(31))| [5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,5],[1,0,0,4,26,0,1,0,20,10,0,0,1,22,8,0,0,0,30,0,0,0,0,0,30],[1,0,0,0,26,0,30,0,11,0,0,0,1,0,8,0,0,0,1,0,0,0,0,0,30],[30,0,0,0,0,0,30,0,0,0,0,0,1,22,8,0,0,0,30,0,0,0,0,0,30],[1,0,0,4,0,0,1,0,20,0,0,0,30,0,23,0,0,0,30,0,0,0,0,0,1],[0,0,4,0,0,1,0,20,0,0,0,1,22,0,0,0,0,29,9,23,0,0,0,1,0] >;

C3×C24⋊C5 in GAP, Magma, Sage, TeX

C_3\times C_2^4\rtimes C_5
% in TeX

G:=Group("C3xC2^4:C5");
// GroupNames label

G:=SmallGroup(240,199);
// by ID

G=gap.SmallGroup(240,199);
# by ID

G:=PCGroup([6,-3,-5,-2,2,2,2,728,1089,1660,2711]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^2=f^5=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,f*e*f^-1=b>;
// generators/relations

Export

Subgroup lattice of C3×C24⋊C5 in TeX
Character table of C3×C24⋊C5 in TeX

׿
×
𝔽